988 research outputs found

    Analysis of Cache Coherence Protocols for Multilevel Cache Architecture

    Get PDF

    EFFECT OF BALLET-EXPERIENCE OF 12-YEAR-OLD FEMALE CHILDREN ON THE LEARNING OF DYNAMIC BALANCE CONTROL

    Get PDF
    The purpose of this study was to examine whether previous regular experience in ballet enhance the learning balance task on the balance testing board. Eighteen healthy female children aged twelve including eight with more than three years ballet-experience and eight without the ballet-experience participated. Dynamic balance learning consisting of 3 sessions, which were pre-training and post-training with practices, and retention with no practice, were performed on the balance testing board. The interval between each session was one week. The stability was measured while the subject performed balance task on the same balance testing board placed on an AMTI force platform. The stability was defined as the sum of center of pressure (COP) and center of body mass (COM) mono directional displacements; and the variance of the end tip of the balance board displacement in vertical direction. Two way ANOVA for repeated-measures (2 groups 3 sessions) revealed statistically significant increases in postural stability for the test immediately following training and the retention test in both groups. Although interaction effect indicated greater improvement in non-experienced group, the stability of the group with experience in ballet far exceeded that of the group without experience, about all the variables of each session. Our results suggest that experience in ballet up to being twelve year old have positive influence on the learning dynamic balance control task

    Effect of 5-aminolevulinic acid-based photodynamic therapy via reactive oxygen species in human cholangiocarcinoma cells

    Get PDF
    Cancer cells have been reported to exhibit an enhanced capacity for protoporphyrin IX (PpIX) synthesis facilitated by the administration of 5-aminolevulinic acid (ALA). We investigated the effect of ALA-based photodynamic therapy (PDT) on human cholangiocarcinoma cells (HuCC-T1). Since protoporphyrin IX (PpIX), a metabolite of ALA, can produce reactive oxygen species (ROS) under irradiation and then induce phototoxicity, ALA-based PDT is a promising candidate for the treatment of cholangiocarcinoma. When various concentrations of ALA (0.05–2 mM) were used to treat HuCC-T1 cells for 6 or 24 hours, the intracellular PpIX level increased according to the ALA concentration and treatment time. Furthermore, an increased amount of PpIX in HuCC-T1 cells induced increased production of ROS by irradiation, resulting in increased phototoxicity

    Vaccinia-Related Kinase 2 Mediates Accumulation of Polyglutamine Aggregates via Negative Regulation of the Chaperonin TRiC

    Get PDF
    Misfolding of proteins containing abnormal expansions of polyglutamine (polyQ) repeats is associated with cytotoxicity in several neurodegenerative disorders, including Huntington's disease. Recently, the eukaryotic chaperonin TRiC hetero-oligomeric complex has been shown to play an important role in protecting cells against the accumulation of misfolded polyQ protein aggregates. It is essential to elucidate how TRiC function is regulated to better understand the pathological mechanism of polyQ aggregation. Here, we propose that vaccinia-related kinase 2 (VRK2) is a critical enzyme that negatively regulates TRiC. In mammalian cells, overexpression of wild-type VRK2 decreased endogenous TRiC protein levels by promoting TRiC ubiquitination, but a VRK2 kinase-dead mutant did not. Interestingly, VRK2-mediated downregulation of TRiC increased aggregate formation of a polyQ-expanded huntingtin fragment. This effect was ameliorated by rescue of TRiC protein levels. Notably, small interference RNA-mediated knockdown of VRK2 enhanced TRiC protein stability and decreased polyQ aggregation. The VRK2-mediated reduction of TRiC protein levels was subsequent to the recruitment of COP1 E3 ligase. Among the members of the COP1 E3 ligase complex, VRK2 interacted with RBX1 and increased E3 ligase activity on TRiC in vitro. Taken together, these results demonstrate that VRK2 is crucial to regulate the ubiquitination-proteosomal degradation of TRiC, which controls folding of polyglutamine proteins involved in Huntington's disease.open118Ysciescopu

    Torsional Vibration Transduction in a Solid Shaft by MPTs

    Get PDF
    In this study, we aim to investigate the feasibility to use MPTs (Magnetostrictive Patch Transducers) for torsional vibration measurement in solid ferromagnetic cylinders. MPTs consisting of thin magnetostrictive patches, permanent magnets and a solenoid coil have been widely used for elastic wave transduction in the ultrasound frequency range [1] but they have been seldom used for sonic-frequency range vibration measurement, in spite of their unique wireless transduction characteristics. While a MPT was used in Ref. [2] to perform torsional modal testing in a hollow cylinder or a pipe having relatively small torsional rigidity, no investigation has been reported yet on the use of MPTs in “solid” “ferromagnetic” shafts, common torsional power carrying elements in machines.While we will be mainly focused here on the torsional wave measurement in stationary shafts, the MPT-based torsional measurement can be also applied to rotating shafts. Because the torsional rigidities of solid shafts are much larger than those of hollow cylinders of the same radii, it is important to find optimal MPT configurations, such as the optimal number of rectangular patches to be installed around the surface of a solid shaft. Thereby, we performed numerical investigations and accordingly designed a series of experiments for torsional vibration testing in steel shafts. The actual modal testing experiments with the designed MPTs were found to predict the torsional Eigen-frequencies and Eigen-modes that agree well with the theoretical predictions. Also the relation between the measured vibration signals from MPTs and those from strain gages was checked experimentally and in fact, the experimental result favorably agreed with the theoretical prediction. Potential applications of the MPT-based torsional vibration measurement technique in rotating solid shafts for structural health monitoring are also briefly discussed

    Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly(DL-lactide-co-glycolide) copolymer

    Get PDF
    Young-Il Jeong1,*, Do Hyung Kim1,2,*, Chung-Wook Chung1, Jin-Ju Yoo1, Kyung Ha Choi1, Cy Hyun Kim1,2, Seung Hee Ha1, Dae Hwan Kang1,2 1National Research and Development Center for Hepatobiliary Cancer, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea, Research Institute for Convergence of Biomedical Science and Technology, 2School of Medicine, Pusan National University, Yangsan, Republic of Korea*These authors contributed equally to this work.Background: Polymeric micelles using amphiphilic macromolecules are promising vehicles for antitumor targeting. In this study, we prepared anticancer agent-incorporated polymeric micelles using novel block copolymer.Methods: We synthesized a block copolymer composed of dextran and poly (DL-lactide-co-glycolide) (DexbLG) for antitumor drug delivery. Doxorubicin was selected as the anticancer drug, and was incorporated into polymeric micelles by dialysis. Polymeric micelles were observed by transmission electron microscopy to be spherical and smaller than 100 nm, with a narrow size distribution. The particle size of doxorubicin-incorporated polymeric micelles increased with increasing drug content. Higher initial drug feeding also increased the drug content. Results: During the drug-release study, an initial burst release of doxorubicin was observed for 10 hours, and doxorubicin was continuously released over 4 days. To investigate the in vitro anticancer effects of the polymeric micelles, doxorubicin-resistant HuCC-T1 cells were treated with a very high concentration of doxorubicin. In an antiproliferation study, the polymeric micelles showed higher cytotoxicity to doxorubicin-resistant HuCC-T1 cells than free doxorubicin, indicating that the polymeric micelles were effectively engulfed by tumor cells, while free doxorubicin hardly penetrated the tumor cell membrane. On confocal laser scanning microscopy, free doxorubicin expressed very weak fluorescence intensity, while the polymeric micelles expressed strong red fluorescence. Furthermore, in flow cytometric analysis, fluorescence intensity of polymeric micelles was almost twice as high than with free doxorubicin.Conclusion: DexbLG polymeric micelles incorporating doxorubicin are promising vehicles for antitumor drug targeting.Keywords: dextran, polymeric micelle, block copolymer, poly(DL-lactide-co-glycolide
    corecore